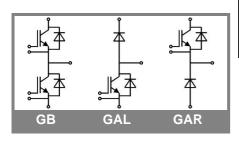


SEMITRANS[®] 2

IGBT Modules


SKM 100GB123D SKM 100GAL123D SKM 100GAR123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specific				
Symbol	Conditions		Values	Units
IGBT				•
V_{CES}	T _j = 25 °C T _i = 150 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	100	Α
		T _{case} = 80 °C	90	Α
I _{CRM}	$I_{CRM} = 2xI_{Cnom}, t_p = 1 \text{ ms}$		150	Α
V_{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs
Inverse D	Diode			•
I _F	T _j = 150 °C	T_{case} = 25 °C	95	Α
		T _{case} = 80 °C	65	Α
I_{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$		150	Α
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	720	Α
Freewhee	eling Diode			
I _F	T _j = 150 °C	T_{case} = 25 °C	130	Α
		T _{case} = 80 °C	90	Α
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$		200	Α
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	900	Α
Module				
$I_{t(RMS)}$			200	Α
T_{vj}			- 40 + 150	°C
T _{stg}	$T_{OPERATION} \leq T_{stg}$		- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•		•			•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V_{CE0}		T _i = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		14,6	18,6	mΩ
		T _j = 125°C		20	25,3	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				5	6,6	nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,72	0,9	nF
C _{res}				0,38	0,5	nF
Q_G	V _{GE} = -8V - +20V			750		nC
R _{Gint}	T _j = °C			5		Ω
t _{d(on)}				30	60	ns
t _r	R_{Gon} = 15 Ω	$V_{CC} = 600V$		70	140	ns
E _{on}		I _{Cnom} = 75A		10		mJ
t _{d(off)}	$R_{Goff} = 15 \Omega$	T _j = 125 °C		450	600	ns
t _f		V _{GE} = ± 15V		70	90	ns
E_{off}				8		mJ
R _{th(j-c)}	per IGBT				0,18	K/W

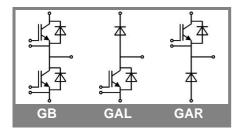
SEMITRANS[®] 2

IGBT Modules

SKM 100GB123D SKM 100GAL123D SKM 100GAR123D

Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications

- AC inverter drives
- UPS

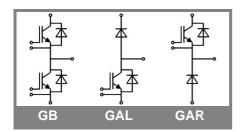
Characte	ristics					
Symbol	Conditions	l	min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	$I_{Fnom} = 75 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,2	٧
		T _j = 125 °C				V
r _F		T _j = 25 °C		12	17	mΩ
		T _j = 125 °C				mΩ
I _{RRM}	I _{Fnom} = 75 A	T _j = 125 °C		40		A
Q _{rr}	di/dt = 800 A/µs			3		μC
E _{off}	$V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$					mJ
R _{th(j-c)D}	per diode				0,5	K/W
	eling Diode					
$V_F = V_{EC}$	$I_{Fnom} = 100 \text{ A}; V_{GE} = 0 \text{ V}$			2	2,5	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,8		V
V_{F0}				1,1	1,2	V
		T _j = 125 °C				V
r_{F}		T _j = 25 °C		9	13	V
		T _j = 125 °C				V
I _{RRM}	I _{Fnom} = 100 A	T _j = 25 °C		50		A
Q _{rr}	di/dt = 1000 A/µs			5		μC
E _{off}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)FD}$	per diode				0,36	K/W
Module						_
L _{CE}					30	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module				0,05	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M5		2,5		5	Nm
w					160	g

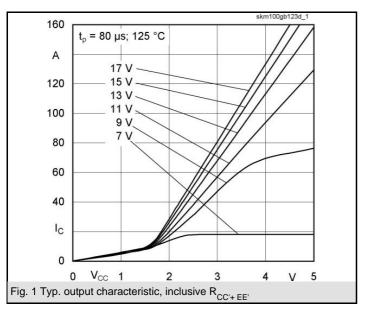
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

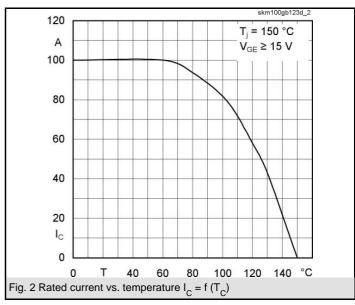
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

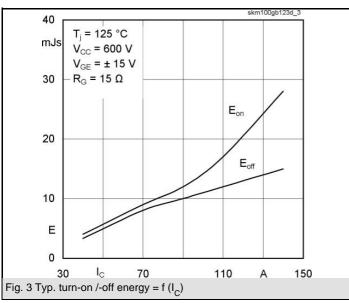
IGBT Modules

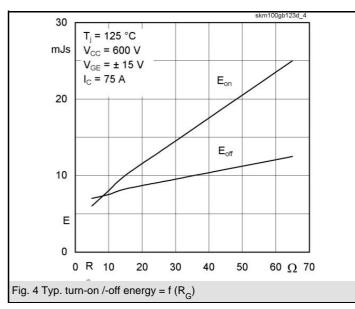
SKM 100GB123D SKM 100GAL123D SKM 100GAR123D


Features


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)


Typical Applications


- AC inverter drives
- UPS


Symbol	Conditions	Values	Units
Z R _i R _i			
R _i	i = 1	162	mk/W
R _i	i = 2	14	mk/W
R _i	i = 3	2,7	mk/W
R _i	i = 4	1,3	mk/W
tau _i	i = 1	0,204	s
tau _i	i = 2	0,0242	s
tau _i	i = 3	0,0013	s
tau _i	i = 4	0	s
Z _{Ri} th(j-c)D	•		
R _i	i = 1	320	mk/W
R _i	i = 2	150	mk/W
R _i	i = 3	0,0265	mk/W
R _i	i = 4	3,5	mk/W
tau _i	i = 1	0,05	s
tau _i	i = 2	0,0104	s
tau _i	i = 3	0,0034	s
tau _i	i = 4	0,0003	s

